Handling Gradual Concept Drift in Stream Data

نویسنده

  • Priyanka B. Dongre
چکیده

Data streams are sequence of data examples that continuously arrive at time-varying and possibly unbound streams. These data streams are potentially huge in size and thus it is impossible to process many data mining techniques (e.g., sensor readings, call records, web page visits). Tachiniques for classification fail to successfully process data streams because of two factors: their overwhelming volume and their distinctive feature known as concept drift. Concept drift is defined as changes in the learned structure that occur over time. The occurrence of concept drift leads to a drastic drop in classification accuracy. The recognition of concept drift in data streams has led to sliding-window approaches, instance selection methods, drift detection, ensemble classifiers. This paper describes the various types of concept drifts that affect the data examples and discusses various approaches inorder to handle concept drift scenarios. The aim of this paper is to review and compare single classifier and ensemble approaches to data stream mining respectively and propose a methodology towards its contribution successfully.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

A Comparative study of Data stream classification using Decision tree and Novel class Detection Techniques

The rapid development in the e-commerce and distributed computing generates millions of the transaction, continuously. This continues arrival of data is considered as a DataStream. Data mining process for classification needs considerable modification to cope with continuous data. As Mining continues stream of data, conceptually has infinite length, and the class of data may change in sudden or...

متن کامل

Algorithm to handle Concept Drifting in Data Stream Mining

Data Stream Mining is the evolving field of research. Mining continuous data streams brings unique opportunities but also new challenges. This paper will describe and evaluate the proposed classifier which uses ensemble classifier along with the boosting concept. Adaptive windowing is also used for handling the data stream. Empirical study will show that the proposed classifier takes less memor...

متن کامل

Enhanced Decision Tree Algorithm for Data Streams using adaptation of Concept Drift

Construction of a decision tree is a well researched problem in data mining. Mining of streaming data is a very useful and necessary application. Algorithms such as VFDT and CVFDT are used for decision tree construction, but as a lot of new examples are added, a new optimal model needs to be constructed. Here in this paper, we have provided an algorithm for decision tree construction which uses...

متن کامل

Incremental Option Trees for Handling Gradual Concept Drift

Data streams are inherently time-varying and exhibit various types of dynamics. The presence of concept drift in the data significantly influences the accuracy of the learner, thus efficient handling of non-stationarity is an important problem. In this paper, we address the problem of modeling the transition phases between consecutive concepts in gradual concept drift. In those transition phase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016